Conjunto dos números naturais, sistema decimal e base binária.
Problema proposto: retirar [tex]10[/tex] dígitos do número [tex]12345123451234512345[/tex] para obter o menor número possível.
Problemas resolvidos:
Retirar [tex]10[/tex] dígitos do número [tex]12345123451234512345[/tex] para obter o menor número possível.
Encontrar os números naturais de dois dígitos [tex]AB[/tex], que somados ao número com os dígitos na ordem contrária [tex]BA[/tex], resulta um em quadrado perfeito.
Sistema decimal, sucessor, tricotomia, adição e ordem.
Problema proposto: encontrar o menor número de [tex]12[/tex] algarismos cuja soma dos algarismos seja igual a [tex]80[/tex].
Multiplicação. Propriedades comutativa, associativa e distributiva.
Problema proposto: encontrar o número que quando multiplicado por [tex]9[/tex] resulta em um número formado somente por algarismos iguais a [tex]1[/tex].
Resolvemos o problema proposto na aula anterior.
Discutimos o conceito de “múltiplo”.
Observamos as seguintes representações úteis:
Um número par pode ser escrito como [tex]2n[/tex], onde [tex]n[/tex] é um natural;
Um múltiplo de [tex]3[/tex] se escreve como [tex]3n[/tex], onde n é um natural;
Um número ímpar se escreve como [tex]2n+1[/tex] onde [tex]n[/tex] é um número natural.
Problema: O quadrado de um número é par somente se este número for par.
Um número é composto por vários dígitos. Será simples descobrir qual o menor e maior número que podem ser formados ao adicionar novos dígitos ao inicial?
Usando expressões algébricas para provar propriedades
Provamos que o quadrado de um número é par somente se este número for par.
Observamos que qualquer número natural deve ser de algum dos três tipos a seguir:
Múltiplos de 3;
(Múltiplos de 3) + 1;
(Múltiplos de 3) + 2;
Aritmética dos restos. Critério de divisibilidade por 3.
Problema proposto: Quantos múltiplos de [tex]5[/tex] existem entre [tex]27[/tex] e [tex]213[/tex]?
Critério de divisibilidade por [tex]3[/tex].
Mínimo múltiplo comum.
Problema resolvido: Quantos múltiplos de [tex]5[/tex] existem entre [tex]27[/tex] e [tex]213[/tex]?
Números primos – Teorema Fundamental da Aritmética
Números primos. Existem infinitos números primos. Crivo de Eratóstenes. Teorema Fundamental da Aritmética. Usando fatoração para encontrar MDC e MMC. Algoritmo para MMC e MDC.
');
$('#modalVideos').modal({
backdrop: "static"
});
}
function verVideoExercicio(id, idyoutube, titulo){
var time = "conteudopessoa("+ id +",2);sInterval = setInterval(function(){conteudopessoa("+ id +",2);}, 30000)";
$('#modalVideosLabel').html('');
$('#modalVideosLabel').html(titulo);
$('#modalVideosBody').html('');
$('#modalVideosBody').html('');
$('#modalVideos').modal({
backdrop: "static"
});
}
$(function(){
$('#modalVideos').on('hidden.bs.modal', function (e) {
$('#modalVideosBody').html('');
clearInterval(sInterval);
});
});
function baixarVideo(id, titulo){
$('#modalDownloadLabel').html('');
$('#modalDownloadLabel').html(titulo);
$('#modalDownloadBody').html('
');
$('#modalDownload').modal({
backdrop: "static"
});
$.ajax({
type: 'POST',
url: 'https://portaldaobmep.impa.br/index.php/modulo/ajaxdownload',
data:{ "id": id },
success:function(data){
$('#modalDownloadBody').html(data);
},
dataType:'html'
});
}
function descricaoVideo(id, nome){
$('#modalDescricaoLabel').html('');
$('#modalDescricaoLabel').html(nome);
$('#modalDescricaoBody').html('');
$.ajax({
type: 'POST',
url: 'https://portaldaobmep.impa.br/index.php/modulo/ajaxdescricao',
data:{ "id": id },
success:function(data){
$('#modalDescricaoBody').html(data);
},
dataType:'html'
});
$('#modalDescricaoBody').html('');
$('#modalDescricao').modal({
backdrop: "static"
});
}
function verExercicio(id, titulo){
var time = "";
$('#modalExerciciosLabel').html('');
$('#modalExerciciosLabel').html(titulo);
$('#modalExerciciosBody').html('');
$.ajax({
type: 'POST',
url: 'https://portaldaobmep.impa.br/index.php/modulo/ajaxsolucao',
data:{ "id": id },
success:function(data){
$('#modalExerciciosBody').html(data + time);
var math = document.getElementById("modalExerciciosBody");
MathJax.Hub.Queue(["Typeset",MathJax.Hub,math]);
},
dataType:'html'
});
}
$(function(){
$('#modalExercicios').on('hidden.bs.modal', function (e) {
$('#modalExerciciosBody').html('');
clearInterval(sInterval);
});
});
function verInterativo(id, titulo){
var time = "";
$('#modalInterativoLabel').html('');
$('#modalInterativoLabel').html(titulo);
$('#modalInterativoBody').html('');
$.ajax({
type: 'POST',
url: 'https://portaldaobmep.impa.br/index.php/modulo/ajaxinterativo',
data:{ "id": id },
success:function(data){
$('#modalInterativoBody').html(data + time);
var math = document.getElementById("modalInterativoBody");
MathJax.Hub.Queue(["Typeset",MathJax.Hub,math]);
},
dataType:'html'
});
}
function verInterativoFull(id, titulo){
var time = "";
$('#modalInterativoFullBody').html('');
$.ajax({
type: 'POST',
url: 'https://portaldaobmep.impa.br/index.php/modulo/ajaxinterativo',
data:{ "id": id },
success:function(data){
$('#modalInterativoFullBody').html(data + time);
var math = document.getElementById("modalInterativoFullBody");
MathJax.Hub.Queue(["Typeset",MathJax.Hub,math]);
},
dataType:'html'
});
}
$(function(){
$('#modalInterativo').on('hidden.bs.modal', function (e) {
$('#modalInterativoBody').html('');
clearInterval(sInterval);
});
});
$(function(){
$('#modalInterativoFull').on('hidden.bs.modal', function (e) {
$('#modalInterativoFullBody').html('');
clearInterval(sInterval);
});
});
function verQuiz(id, titulo){
var time = "";
$('#modalQuizLabel').html('');
$('#modalQuizLabel').html(' '+titulo);
$('#modalQuizBody').html('
');
$('#modalQuizBody').addClass('grid-view-loading');
$('#modalQuiz').modal({
backdrop: "static"
});
$.ajax({
type: 'POST',
url: 'https://portaldaobmep.impa.br/index.php/modulo/ajaxquiz',
data:{ "id": id , "modulo_id":52},
success:function(data){
$('#modalQuizBody').removeClass('grid-view-loading');
$('#modalQuizBody').html(data + time);
var math = document.getElementById("#modalQuizBody");
MathJax.Hub.Queue(["Typeset",MathJax.Hub,math]);
},
dataType:'html',
error: function (jqXHR, textStatus, errorThrown) {
let errorCode = jqXHR.status;
let errorMessage = jqXHR.responseText;
if(errorCode == '404'){
$('#modalQuizBody').removeClass('grid-view-loading');
$('#modalQuizBody').html(errorMessage);
}
}
});
}
function verQuizModulo(titulo){
var time = "";
$('#modalQuizLabel').html('');
$('#modalQuizLabel').html(' '+titulo);
$('#modalQuizBody').html('
');
$('#modalQuizBody').addClass('grid-view-loading');
$('#modalQuiz').modal({
backdrop: "static"
});
$.ajax({
type: 'POST',
url: 'https://portaldaobmep.impa.br/index.php/modulo/ajaxquizmodulo',
data:{ "modulo_id":52},
success:function(data){
$('#modalQuizBody').removeClass('grid-view-loading');
$('#modalQuizBody').html(data + time);
var math = document.getElementById("#modalQuizBody");
MathJax.Hub.Queue(["Typeset",MathJax.Hub,math]);
},
dataType:'html',
error: function (jqXHR, textStatus, errorThrown) {
let errorCode = jqXHR.status;
let errorMessage = jqXHR.responseText;
if(errorCode == '404'){
$('#modalQuizBody').removeClass('grid-view-loading');
$('#modalQuizBody').html(errorMessage);
}
}
});
}
function conteudopessoa(conteudo_id,tipo_conteudo_id){
var assunto_id = 1;
$.ajax({
type: 'POST',
url: 'https://portaldaobmep.impa.br/index.php/modulo/ajaxconteudopessoa',
data:{ "modulo_id": 52,"conteudo_id" : conteudo_id,tipo_conteudo_id : tipo_conteudo_id,identificador : identificador,"assunto_id":assunto_id},
});
}
function fecharModalQuiz(){
if(confirm("Tem certeza que deseja fechar o Teste? \nO Teste será encerado e na proxima vez ele for aberto, o Teste terá reiniciado."))
{
$('#modalQuiz').modal('hide');
}
}
//-->
Login
Atenção!
Você possue duas contas no portal da matemática, e a conta que você acabou de se logar, NÃO É VÁLIDA para uso no OBMEP na Escola/PIC!
Use o usuário e senha fornecidos para uso no projeto (Usuário do OBMEP na Escola ou PIC).