Abordamos os conceitos de comensurabilidade e incomensurabilidade de dois segmentos, comentando como eles foram o ponto de partida para o conceito de número irracional
Atribuído ao filósofo grego Tales de Mileto, o teorema afirma que quando duas retas transversais cortam um feixe de retas paralelas as medidas dos segmentos delimitados nas transversais são proporcionais
Em Breve!
Teorema de Tales - Parte II
Essa segunda parte do material teórico sobre o Teorema de Tales apresenta sua aplicação mais substantiva, os teoremas da bissetriz interna e externa.
Nessa primeira parte da discussão sobre o teorema de Tales, apresentamos a demonstração de um caso particular relevante, juntamente com algumas aplicações interessantes
Nesta aula apresentamos a noção de semelhança de triângulos. Apresentamos também alguns critérios que nos permitem decidir se dois triângulos são semelhantes ou não juntamente com algumas aplicações de tais critérios.
Resolução de Exercícios: Semelhança de Triângulos – Parte 3
Nesta aula continuamos com a resolução de exercícios envolvendo semelhança de triângulos. Utilizamos também, por exemplo, o Teorema da Bissetriz Interna.
Se colocarmos um dos vértices de um quadrado coincidindo com o centro do outro e pudermos rodá-lo em relação a esse centro, qual seria a maior área de interseção possível entre os 2 quadrados?
Em Breve!
Semelhança entre Triângulos
Discutimos o conceito e os principais casos de semelhança entre triângulos, bem como apresentamos algumas aplicações e os rudimentos do conceito de homotetia
Resolução de Exercícios: Relações Métricas no Triângulo Retângulo – Parte 1
Nesta aula apresentamos a resolução de alguns exercícios envolvendo relações métricas no triângulo retângulo. Na resolução, entre outras coisas, utilizamos também, por exemplo, semelhança de triângulos.
Resolução de Exercícios: Relações Métricas no Triângulo Retângulo – Parte 2
Nesta aula continuamos com a resolução de exercícios envolvendo relações métricas no triângulo retângulo. Na resolução, entre outras coisas, utilizamos também, por exemplo, o Teorema da Bissetriz Interna.
Uma relação bastante conhecida é a Desigualdade entre a média aritmética e a a média geométrica de números. Você consegue prová-la geometricamente através da figura?
Em Breve!
Relações Métricas em Triângulos Retângulos
Discutimos as relações métricas usuais em triângulos retângulos, dando especial ênfase ao Teorema de Pitágoras. Vários exemplos são também apresentados
Apresentamos o Teorema das Cordas, que estabelece uma relação entre os 4 segmentos criados por duas cordas que se intersectam no interior de um círculo.
');
$('#modalVideos').modal({
backdrop: "static"
});
}
function verVideoExercicio(id, idyoutube, titulo){
var time = "conteudopessoa("+ id +",2);sInterval = setInterval(function(){conteudopessoa("+ id +",2);}, 30000)";
$('#modalVideosLabel').html('');
$('#modalVideosLabel').html(titulo);
$('#modalVideosBody').html('');
$('#modalVideosBody').html('');
$('#modalVideos').modal({
backdrop: "static"
});
}
$(function(){
$('#modalVideos').on('hidden.bs.modal', function (e) {
$('#modalVideosBody').html('');
clearInterval(sInterval);
});
});
function baixarVideo(id, titulo){
$('#modalDownloadLabel').html('');
$('#modalDownloadLabel').html(titulo);
$('#modalDownloadBody').html('
');
$('#modalDownload').modal({
backdrop: "static"
});
$.ajax({
type: 'POST',
url: 'https://portaldaobmep.impa.br/index.php/modulo/ajaxdownload',
data:{ "id": id },
success:function(data){
$('#modalDownloadBody').html(data);
},
dataType:'html'
});
}
function descricaoVideo(id, nome){
$('#modalDescricaoLabel').html('');
$('#modalDescricaoLabel').html(nome);
$('#modalDescricaoBody').html('');
$.ajax({
type: 'POST',
url: 'https://portaldaobmep.impa.br/index.php/modulo/ajaxdescricao',
data:{ "id": id },
success:function(data){
$('#modalDescricaoBody').html(data);
},
dataType:'html'
});
$('#modalDescricaoBody').html('');
$('#modalDescricao').modal({
backdrop: "static"
});
}
function verExercicio(id, titulo){
var time = "";
$('#modalExerciciosLabel').html('');
$('#modalExerciciosLabel').html(titulo);
$('#modalExerciciosBody').html('');
$.ajax({
type: 'POST',
url: 'https://portaldaobmep.impa.br/index.php/modulo/ajaxsolucao',
data:{ "id": id },
success:function(data){
$('#modalExerciciosBody').html(data + time);
var math = document.getElementById("modalExerciciosBody");
MathJax.Hub.Queue(["Typeset",MathJax.Hub,math]);
},
dataType:'html'
});
}
$(function(){
$('#modalExercicios').on('hidden.bs.modal', function (e) {
$('#modalExerciciosBody').html('');
clearInterval(sInterval);
});
});
function verInterativo(id, titulo){
var time = "";
$('#modalInterativoLabel').html('');
$('#modalInterativoLabel').html(titulo);
$('#modalInterativoBody').html('');
$.ajax({
type: 'POST',
url: 'https://portaldaobmep.impa.br/index.php/modulo/ajaxinterativo',
data:{ "id": id },
success:function(data){
$('#modalInterativoBody').html(data + time);
var math = document.getElementById("modalInterativoBody");
MathJax.Hub.Queue(["Typeset",MathJax.Hub,math]);
},
dataType:'html'
});
}
function verInterativoFull(id, titulo){
var time = "";
$('#modalInterativoFullBody').html('');
$.ajax({
type: 'POST',
url: 'https://portaldaobmep.impa.br/index.php/modulo/ajaxinterativo',
data:{ "id": id },
success:function(data){
$('#modalInterativoFullBody').html(data + time);
var math = document.getElementById("modalInterativoFullBody");
MathJax.Hub.Queue(["Typeset",MathJax.Hub,math]);
},
dataType:'html'
});
}
$(function(){
$('#modalInterativo').on('hidden.bs.modal', function (e) {
$('#modalInterativoBody').html('');
clearInterval(sInterval);
});
});
$(function(){
$('#modalInterativoFull').on('hidden.bs.modal', function (e) {
$('#modalInterativoFullBody').html('');
clearInterval(sInterval);
});
});
function verQuiz(id, titulo){
var time = "";
$('#modalQuizLabel').html('');
$('#modalQuizLabel').html(' '+titulo);
$('#modalQuizBody').html('
');
$('#modalQuizBody').addClass('grid-view-loading');
$('#modalQuiz').modal({
backdrop: "static"
});
$.ajax({
type: 'POST',
url: 'https://portaldaobmep.impa.br/index.php/modulo/ajaxquiz',
data:{ "id": id , "modulo_id":10},
success:function(data){
$('#modalQuizBody').removeClass('grid-view-loading');
$('#modalQuizBody').html(data + time);
var math = document.getElementById("#modalQuizBody");
MathJax.Hub.Queue(["Typeset",MathJax.Hub,math]);
},
dataType:'html',
error: function (jqXHR, textStatus, errorThrown) {
let errorCode = jqXHR.status;
let errorMessage = jqXHR.responseText;
if(errorCode == '404'){
$('#modalQuizBody').removeClass('grid-view-loading');
$('#modalQuizBody').html(errorMessage);
}
}
});
}
function verQuizModulo(titulo){
var time = "";
$('#modalQuizLabel').html('');
$('#modalQuizLabel').html(' '+titulo);
$('#modalQuizBody').html('
');
$('#modalQuizBody').addClass('grid-view-loading');
$('#modalQuiz').modal({
backdrop: "static"
});
$.ajax({
type: 'POST',
url: 'https://portaldaobmep.impa.br/index.php/modulo/ajaxquizmodulo',
data:{ "modulo_id":10},
success:function(data){
$('#modalQuizBody').removeClass('grid-view-loading');
$('#modalQuizBody').html(data + time);
var math = document.getElementById("#modalQuizBody");
MathJax.Hub.Queue(["Typeset",MathJax.Hub,math]);
},
dataType:'html',
error: function (jqXHR, textStatus, errorThrown) {
let errorCode = jqXHR.status;
let errorMessage = jqXHR.responseText;
if(errorCode == '404'){
$('#modalQuizBody').removeClass('grid-view-loading');
$('#modalQuizBody').html(errorMessage);
}
}
});
}
function conteudopessoa(conteudo_id,tipo_conteudo_id){
var assunto_id = 1;
$.ajax({
type: 'POST',
url: 'https://portaldaobmep.impa.br/index.php/modulo/ajaxconteudopessoa',
data:{ "modulo_id": 10,"conteudo_id" : conteudo_id,tipo_conteudo_id : tipo_conteudo_id,identificador : identificador,"assunto_id":assunto_id},
});
}
function fecharModalQuiz(){
if(confirm("Tem certeza que deseja fechar o Teste? \nO Teste será encerado e na proxima vez ele for aberto, o Teste terá reiniciado."))
{
$('#modalQuiz').modal('hide');
}
}
//-->
Login
Atenção!
Você possue duas contas no portal da matemática, e a conta que você acabou de se logar, NÃO É VÁLIDA para uso no OBMEP na Escola/PIC!
Use o usuário e senha fornecidos para uso no projeto (Usuário do OBMEP na Escola ou PIC).